Принцип работы обмотки возбуждения генератора

У турбогенераторов возбуждение является неотъемлемой частью, и от надёжности его работы в большой степени зависит надежная и устойчивая работа всего турбогенератора.

Обмотка возбуждения укладывается в пазы ротора генератора, и к ней с помощью контактных колец и щёток, исключением является бесщёточная система возбуждения, подводится постоянный ток от источника. В качестве источника энергии может применяться генератор постоянного или переменного тока, который принято называть возбудителем, а систему возбуждения электромашинной. В безмашинной системе возбуждения источником энергии является сам генератор, поэтому её называют системой самовозбуждения.

Основные системы возбуждения должны:

• обеспечивать надежное питание обмотки ротора в нормальных и аварийных режимах;

• допускать регулирование напряжения возбуждения в достаточных пределах;

• обеспечивать быстродействующее регулирование возбуждения с высокими кратностями форсирования в аварийных режимах;

• осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V=0,632∙(Uf потUf ном)/Uf номt1, и отношение потолочного напряжения к номинальному напряжению возбуждения Uf пот/Uf ном=Кф — так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь Кф≥2, а скорость нарастания возбуждения — не менее 2 с -1 . Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 с -1 для гидрогенераторов мощностью до 4 MBА включительно и не менее 1,5 с -1 для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние элек­тропередачи, к системам возбуждения предъявляются более высокие требования: Кф=3—4, скорость нарастания возбуждения до 10∙Uf H0Mв секунду.

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов мощностью 800—1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ 533-85Е).

Мощность источника возбуждения составляет обычно 0,5 — 2% мощности турбогенератора, а напряжение возбуждения 115—575 В.

Чем больше мощность турбогенератора, тем выше напряжение и тем меньше относительная мощность возбудителя.

Системы возбуждения можно разделить на два типа: независимое (прямое) возбуждение и зависимое (косвенное) возбуждение (самовозбуждение).

К первому типу относятся все электромашинные возбудители постоянного и переменного тока, сопряжённые с валом турбогенератора (рис. 4.1).

Ко второму типу относятся системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы (рис. 4.2, а) и отдельно установленные электромашинные возбудители, вращаемые двигателями переменного тока, питающимися от шин собственных нужд станции (рис. 4.2, б).

Электромашинные возбудители постоянного тока (рис. 4.1, а) ранее применялись на турбогенераторах малой мощности. В настоящее время такая система возбуждения практически не применяется, так как является маломощной и при скорости вращения 3000 об/мин данную систему возбуждения трудно выполнить из-за тяжелых условий работы коллектора и щеточного аппарата (ухудшение условий коммутации).

На действующих турбогенераторах применяют:

• высокочастотную систему возбуждения;

• бесщёточную систему возбуждения;

• статическую тиристорную независимую систему возбуждения;

• статическую тиристорную систему самовозбуждения.

В перечисленных системах возбуждения возбудителем является генератор переменного тока различного исполнения, не имеющий ограничения по мощности. Для преобразования переменного тока в постоянный применяются неуправляемые и управляемые полупроводниковые выпрямители-вентили.


Принцип работы высокочастотного возбуждения (рис. 4.1, б) заключается в том, что на одном валу с генератором вращается высокочастотный генератор трёхфазного тока 500 Гц, который через полупроводниковые выпрямители В подаёт выпрямленный ток на кольца ротора турбогенератора. При такой системе возбуждения исключается влияние изменения режимов работы внешней сети на возбуждение генератора, что повышает его устойчивость при коротких замыканиях в энергосистеме.

Рис. 4.1. Принципиальные схемы независимой системы возбуждения генераторов:

а — электромашинная с генератором постоянного тока; б — высокочастотная;

СГ — синхронный генератор; ВГ — возбудитель постоянного тока;

ВЧГ — высокочастотный генератор; ПВ — подвозбудитель; В — выпрямитель

Рис. 4.2. Принципиальные схемы зависимой системы возбуждения генераторов;

ВТ — вспомогательный трансформатор; АД — асинхронный двигатель

На современных турбогенераторах высокочастотную систему возбуждения не применяют, как устаревшую. Для мощных турбогенераторов токи возбуждения составляют 5—8 кА. Это создает большие трудности подвода постоянного тока к обмотке возбуждения генератора с помощью скользящих контактов — колец и щёток. Поэтому в настоящее время для ряда генераторов применяется бесщёточная система возбуждения, в которой выпрямительное устройство располагается на роторе, а питается от обратимой машины через воздушный зазор. Поэтому электрическая связь между выпрямителем и обмоткой возбуждения выполняется жестким токопроводом без применения контактных колец и щёток.

В независимой статической системе и системе самовозбуждения применяются управляемые полупроводниковые кремниевые выпрямители — тиристоры. Это позволило увеличить быстродействие данных систем возбуждения по сравнению с системой, например, высокочастотной, где применяются неуправляемые выпрямители. Так как в данных системах возбуждения применяется группа статических управляемых выпрямителей, то для подвода постоянного тока к обмотке возбуждения генератора также применяются скользящие контакты, что является недостатком. Тиристорные системы возбуждения нашли применение для турбогенераторов мощностью 160—500 МВт. На рис. 4.2, а приведена принципиальная схема статического тиристорного самовозбуждения.

На случай повреждения системы возбуждения предусматривается установка резервных возбудителей: по одному на каждые четыре генератора.

В качестве резервного возбудителя устанавливают генераторы постоянного тока, приводимые во вращение асинхронными двигателями, подключёнными к шинам собственных нужд станции (рис. 4.2, б). Чтобы при посадке напряжения, например при КЗ, резервный возбудитель не затормозился, на его валу устанавливают маховик.

Не нашли то, что искали? Воспользуйтесь поиском:

Содержание

Схемы с внешним регулятором напряжения

Схемы со встроенным регулятором напряжения

Схемы с питанием обмотки возбуждения от выхода генератора

Схемы генераторов с дополнительными диодами

Схемы с многофункциональными регуляторами напряжения

Общие описания

Схемы с питанием обмотки возбуждения от выхода генератора

Автомобильный генератор возбуждается от аккумулятора. Как только включается зажигание, выходной транзистор регулятора открывается и через него идет ток возбуждения , генератор возбуждается. Когда генератор заработал, возбуждение происходит уже от самого генератора по той же цепи, через замок зажигания. При включенном зажигании в таких схемах плюс аккумулятора всегда остается подключенным к обмотке возбуждения.

Регулятор напряжения может быть внешним и встроенным. Внешний регулятор это отдельная коробочка, которая соединяется с генератором проводами и стоит в стороне от генератора. Встроенный регулятор, входит в состав генератора, крепится внутри или снаружи корпуса, обычно, встроенный регулятор сделан вместе со щетками.

Это схема с внешним регулятором напряжения, с заземленной щеткой. По такой схеме сделан генератор Г 221, для автомобиля "Жигули" ВАЗ 2101,02, 03, 06, и ранней "Нивы"

Работа схемы автомобильного генератора (это описание применимо для всех последующих схем)

Схема генератора состоит из обмотки генератора, выпрямителя (Диодного моста), обмотки возбуждения в роторе, регулятора напряжения, аккумулятора и подключенных к генератору приборов электрооборудования. Аккумулятор и генератор работают совместно. Когда генератор не работает все электрооборудование питается от аккумулятора. Когда генератор возбуждается, все начинает работать от генератора, и аккумулятор заряжается. Аккумулятор создает первоначальный ток, для возбуждения генератора, то есть, намагничивает ротор. Аккумулятор для генератора нужен обязательно. Если нет аккумулятора, генератор можно крутить сколько угодно, он не заработает.

При включении зажигания, ток от плюса аккумулятора идет в ротор через щетки. Этот ток проходит через открытый транзистор регулятора напряжения. Ток обмотки ротора намагничивает железные полюса с клювами. Двигатель заводится, ротор раскручивается, и обмотка статора начинает испытывать резкие изменения магнитного поля от мелькающих клювов ротора. В обмотке статора возникает Электродвижущая сила (ЭДС). В цепи обмотки появляется переменный ток. Этот ток проходит через диодный мост, становится выпрямленным, близким по форме к постоянному.

На всех приборах автомобиля и на аккумуляторе начинает действовать напряжение генератора. Напряжение генератора становится выше ЭДС аккумулятора, и он начинает заряжаться.

Когда генератор работает, ток возбуждения в ротор идет уже не от аккумулятора, а от самого генератора. Регулирование напряжения генератора происходит изменением тока возбуждения..

Проблема возникает в том, что, ЭДС генератора значительно превышает необходимое значение напряжения, для работы электрооборудования. Для того, чтобы поддерживать напряжение на заданном уровне 13, 8 – 14, 2 Вольта, к генератору подключен регулятор напряжения, он ограничивает напряжение генератора..

При включении, регулятор обязательно открыт, чтобы пропустить ток возбуждения, который намагничивает ротор. Когда генератор раскручивается, ЭДС сильно вырастает, регулятор, подключенный в выходу генератора, чувствует, что напряжении становится выше и закрывается, ток возбуждения уменьшается, напряжение генератора падает. Регулятор чувствует, что напряжение стало ниже и снова открывается, появляется ток возбуждения и напряжение растет, регулятор снова закрывается, и т. д. Напряжение пилообразно изменяется и в среднем поддерживается на заданном уровне.

С увеличением количества включенных приборов, мощность которую отдает генератор растет, а значит, напряжение на выходе генератора снижается, регулятор напряжения отслеживает это снижение и поддерживает напряжение генератора, пока хватает его мощности.

Регулятор поддерживает заданное напряжение на выходе генератора при изменениях числа оборотов и изменениях нагрузки. Это обеспечивает правильную зарядку аккумулятора, и нормальную работу всего электрооборудования.

Схема с внешним регулятором с заземленным транзистором, используется для многих типов устаревших генераторов. 1631, 192, и.т..п. для автомобилей Волга и Газель с двигателем 402. На многих американских автомобилях, вплоть, до 90 годов, применялись генераторы с внешним регулятором напряжения. Например автомобили "Газель" с двигателем "Крайслер" были сделаны по такой схеме.

Схема генератора со встроенным регулятором напряжения

В этом случае регулятор напряжения смонтирован в единый узел со щеточным узлом, и установлен на генератор.

По такой схеме сделаны генераторы 58.3701, для автомобиля "Москвич" и все генераторы для автомобилей УАЗ, ЗиЛ, ГАЗ 80 -х — 90-х годов выпуска.

Все три схемы — это схемы с питанием обмотки возбуждения от выхода генератора. Первоначальное возбуждение происходит от аккумулятора, а после запуска ток возбуждения берется с выхода генератора, то есть с той же самой точки.

Недостаток Схемы с питанием обмотки возбуждения от выхода генератора .

Аккумулятор всегда подключен к плюсовому выводу генератора, это необходимо для того, чтобы генератор и аккумулятор могли работать как источники заменяя друг друга — двигатель не работает — источник аккумулятор, двигатель заработал — источник генератор, и все работает от него, а аккумулятор заряжается. Когда генератор не работает, аккумулятор, прямо подключенный к нему, не может бесполезно разряжаться через диодный мост потому, что диодный мост не пропускает ток в обратном направлении, но, через обмотку возбуждения в роторе, аккумулятор может разрядиться.

Если двигатель не завелся и генератор не заработал, а зажигание осталось включено, то идет ток ротора от аккумулятора (а это 3 – 5 Ампер) и разряжает его. По разным причинам такие ситуации иногда возникают и тогда, через несколько часов невыключенного зажигания, двигатель не заведется. Такие схемы, в которых ротор запитан от выхода генератора и, значит, подключен непосредственно к аккумулятору, могут привести к неожиданной разрядке аккумулятора.

Схемы генераторов с дополнительными диодами

Можно сделать схему возбуждения генератора более короткой и надежной. Ток возбуждения проходит только внутри генератора и не проходит во внешнюю цепь через замок зажигания. Для этого ток возбуждения берется с обмоток генератора, выпрямляется отдельным маленьким выпрямителем и отправляется сразу в обмотку возбуждения.

Схема с дополнительными диодами позволяет защитить аккумулятор от случайного разряда через обмотку возбуждения. В такой схеме обмотка возбуждение, на прямую, не подсоединена к выходу генератора и аккумулятора. Ток возбуждения протекает не от выхода диодного моста, соединенного с аккумулятором, а прямо от своих обмоток в обмотку возбуждения, через дополнительный выпрямитель.

Для первоначального возбуждения приходится использовать аккумулятор. Ток первоначального возбуждения, при включении замка зажигания, проходит в обмотку возбуждения через лампочку. Лампочка имеет большое сопротивление, поэтому ток в цепи возбуждения протекает маленький (лампочка светится), такого тока вполне достаточно для подмагничивания ротора. Как только ротор подмагнитился, генератор начинает вырабатывать напряжение и появляется ток в обмотках, этот ток идет через дополнительные диоды в обмотку возбуждения и намагничивание ротора возрастает, так генератор, практически сразу, возбуждается, получив первоначальный толчок маленьким током через лампочку. Дальше генератор работает уже самостоятельно, потребляя необходимый ток возбуждения через дополнительные диоды.

Цепь внешнего возбуждения остается подключенной, она используется снова при следующем запуске двигателя. Лампочка, фактически, разделяет цепь первоначального возбуждения генератора и цепь рабочего возбуждения. Ток обмотки возбуждения может достигать 5-и Ампер, но чтобы обмотка возбуждения не могла потреблять такой ток от аккумулятора, в цепи первоначального возбуждения и стоит лампочка ограничивающая этот ток. На первый взгляд проблема остается — если ротор генератора не крутится, а зажигание включено, то аккумулятор разряжается, но разражается очень маленьким током через лампочку (лампочка горит). Ток лампочки может гореть несколько дней и это не приведет к полному разряду нормального аккумулятора.
Очень важное преимущество такой схемы состоит в том, лампочка не только ограничивает ток разрядки аккумулятора через обмотку возбуждения, но то, что она становится очень полезным индикатором состояния системы генератор — аккумулятор и позволят контролировать процесс зарядки аккумулятора и исправность — неисправность генератора.

Схема генератора с дополнительными диодами и регулятором напряжения типа L (D+)

Схема генератора с возбуждением типа L. Такая схема широко применялась на автомобилях выпуска 90-х годов. ВАЗ 2108-09, ВАЗ 2107 — 05, ВАЗ 2110, 11, 12, "Газель", "Волга" с двигателем 406, Генераторы 372.3701, 9402,3701, 9422, 3701, и многие другие. Генераторы BOSCH, VALEO

У регуляторов типа L, на точку L подключается выход лампочки для первоначального возбуждения, а когда генератор заработал, то на эту точку приходит напряжение самого генератора, через дополнительный выпрямитель. Такой регулятор считает, что напряжение на выходе дополнительного выпрямителя — это и есть напряжение бортовой сети, поэтому он поддерживает напряжение на выходе генератора, «опираясь» на значение напряжения на точке L. Это получается недостаточно точно.

Такие регуляторы применялись на многих генераторах 90-х годов для автомобилей Mitsubishi, и их корейских клонах.

У регуляторов SL два входа. Точка L имеет такое же подключение, выполняет туже функцию, но, контрольное напряжение, относительно которого нужно поддерживать заданное напряжение поступает на точку S. Это вход с высоким сопротивлением, который тока не потребляет. Он подключается на силовой выход генератора, где напряжение, действительно мало отличается от напряжения бортовой сети. Таким образом, регуляторы SL поддерживают напряжение на выходе генератора более точно, так как контролируют напряжение на самом выходе. На точке S при выключенном зажигании должно быть 12 Вольт (связь с аккумулятором). Если цепь оборвана, что иногда бывает, то генератор работает, но держит напряжение примерно на 1 Вольт выше нужного значения и требуется восстановление проводки, чтобы защитить аккумулятор от перезаряда.

Разрядка аккумулятора по цепи S невозможна так как вход S регулятора имеет очень большое сопротивление.

На Российском регуляторе SL типа 1702.3702 (для ВАЗ 2108) неподключение или обрыв точки S, полностью отключает регулятор.

Такое решение использовали BOSCH, Mitsubishi, DELCO COR. Генераторы БАТЭ для ВАЗ 2110 и для 406-го двигателя 3202, 3222, были выполнены по этой схеме.

Обмотка, намотанная звездой, имеет среднюю точку, если ее подключить к выпрямителю, то с выпрямителя можно снять больший ток. Для выпрямления тока от средней точки нужно дополнительное плечо диодного моста, то есть нужно еще 2 диода. Таким образом, в том же корпусе и с той же обмоткой, можно получить генератор, который будет мощнее на 10 — 15 процентов, только нужен другой диодный мост, на 8 диодов. Такой генератор поддерживает работу большего числа потребителей, что актуально с увеличением числа электронных схем управления в современных автомобилях.

Лампочка не только ограничивает ток, но становится простым и очень полезным сигнализатором.

При включении зажигания лампочка загорается, через нее идет ток первоначально возбуждения, это значит, что цепь возбуждения целая и генератор готов к работе.

После запуска двигателя лампочка гаснет – это значит, что генератор заработал.

Если при включении зажигания лапочка не загорелась, то значит, цепь возбуждения не включилась и генератор не заработает.

Если лампочка загорелась, а после запуска двигателя не погасла, то значит, что цепь возбуждения целая, но генератор не заработал, надо искать неисправность, иначе, через два часа машина безнадежно встанет.

Если лампочка загорелась на ходу, то, то значит, генератор перестал работать (например, порвался ремень), двигатель продолжает работать, пока аккумулятор заряжен, но ехать нужно туда, где отремонтируют генератор.

Лампочка так действует потому, что с одной стороны, она подключается к плюсу аккумулятора, а с другой стороны к обмотке возбуждения. При включении замка зажигания, пока генератор стоит, появляется ток через обмотку возбуждения на минус и лампочка горит, показывая, что цепь возбуждения генератора целая. То есть, плюс питания подводится, лампочка целая, проводка до генератора целая, щетки на месте, контакт на кольцах хороший, обмотка ротора целая, регулятор целый, контакт на массу хороший. Как только генератор закрутился, и на выходе дополнительно выпрямителя, появляется плюс, который подействует на лампочку с другой стороны и лампочка погаснет (от плюса к плюсу ток не идет), это и означает, что генератор заработал.

Тусклое свечение лампочки может быть потому, что плохо затянут контакт плюсового вывода генератора, или неисправен диодный мост

Схема генераторов DENSO, которые применялись на автомобилях Тойота

Схема генератора с регулятором напряжения типа S IG L

Регуляторы такого типа применялись на генераторах фирмы Денсо для автомобилей Тойота

Регулятор представляет собой микросхему с несколькими навесными элементами.

Силовой транзистор Т2, который работает в ключевом режиме, включает и отключает ток возбуждения.

Транзистор Т1 управляет лампочкой контроля зарядки.

Микросхема работает по более сложной программе, чем регулятор на дискретных элементах, что позволяет упростить схему самого генератора.

Регулятор напряжения имеет разъем S IG L, для внешнего подсоединения, и клеммы для внутреннего подсоединения к цепям генератора B, P, F, E

Назначение выводов внешних

S – подвод напряжения с выхода генератора и аккумулятора для контроля уровня напряжения.

IG- питания цепей регулятора после включения замка зажигания

L — подключение лампочки контроля заряда

Назначение выводов внутренних соединений регулятора

B — подвод тока возбуждения от выхода генератора

P — подвод переменного напряжения с фазы генератора

F — отвод тока возбуждения от ротора

В выключенном состоянии к точке В подведен плюс от аккумулятора, но транзистор Т2 полностью закрыт и тока по цепи возбуждения нет. Плюс действует на точке S, но это вход с очень высоким сопротивлением и тока не потребляет.

При включении зажигания плюс от аккумулятора попадает на точку IG и на точку L через лампочку.

Микросхема DD получает питание по цепи IG. Транзистор Т1 открывается и лампочка загорается, сигнализируя о том, что генератор готов к работе, но еще не работает.

Микросхема DD переводит транзистор Т2 в импульсный режим, с такой скважностью, что среднее значение тока оказывается достаточным для подвозбуждения генератора. От плюса, через точку В, в обмотку возбуждения идет ток через транзистор Т2. Ток очень маленький и противодействие ротора вращению двигателя получается очень слабым, что облегчает запуск двигателя и создает более щадящий режим для аккумулятора и стартера.

Стартер начинает раскручивать двигатель. Ротор вращается и подмагниченный начальным током возбуждения, начинает генерировать в обмотке генератора переменное напряжение.

Возникшее переменное напряжение, с одной из обмоток попадает на точку Р регулятора, и на соответствующую ножку микросхемы. Сигнал о появлении переменного напряжения, означает, что двигатель завелся и можно включать генератор. Микросхема переводит транзистор Т2, на такую длительность импульсов при которой ток возбуждения становится достаточно большим, чтобы генератор вышел на рабочее напряжение и начал отдавать достаточную мощность. Ток возбуждения (показано стрелками) от плюса, через точку В, идет в обмотку возбуждения, и через транзистор на Т2 на массу. Ротор сильно намагничивается и генератор начинает работать. Транзистор Т1 получает от микросхемы команду на закрытие и лампочка гаснет, что подтверждает нормальный режим работы генератора.

Далее задача регулятора состоит в поддержании рабочего уровня напряжения на выходе генератора.

Генератор все время поднимает напряжение и стремится превысить его нормальный уровень. Регулятор ограничивает напряжение на заданном уровне. Микросхема DD обеспечивает широтно – импульсное управление (ШИМ – регулятор). Среднее значение тока, протекающего в обмотку зависит от длительности импульса открытого состояния ключевого транзистора Т2. Когда напряжение на выходе генератор возрастает, то микросхема, получая значение этого напряжения на точку S, уменьшает длительность открытого состояния транзистора, и среднее значение тока возбуждения снижается, напряжение на выходе генератора снижается, далее, длительность импульсов вновь увеличивается и напряжение возрастает, таким образом, поддерживается заданный уровень выходного напряжения с достаточно высокой точностью — около 14, 4 Вольта

Диод, шунтирующий обмотку возбуждения, как обычно, создает контур для ЭДС самоиндукции, при резком размыкании тока возбуждения, что снижает импульс высокого напряжения, которое может пробить выходной транзистор Т2

Схема генератора не нуждается в дополнительном выпрямителе для питания обмотки возбуждения.

Схема регулятора напряжения защищает аккумулятор от разрядки через обмотку возбуждения, в случае если зажигание включено, а двигатель не работает.

Как и в схеме с дополнительным выпрямителем, схема потребляет ток на свечение лампочки – сигнализатора разрядки и еще потребляет небольшой ток через обмотку возбуждения, необходимый для первоначального возбуждения, этот ток определяется импульсным режимом транзистора Т2 , его среднее значение оказывается достаточно мало, чтобы не оказывать существенное влияние на разрядку аккумулятора, поэтому в автомобиле, который не завелся, долгое время может быть включено зажигания без риска разрядки аккумулятора через генератор.

На данном рисунке показана схема генераторов на 100 и 110 Ампер, для генераторов меньшей мощности достаточно обычного диодного моста с шестью диодами.

Электромагнитный момент машины

где — угловая скорость якоря.

то электромагнитный момент машины определится следующим выражением:

Величины а, р и N постоянны для данной машины, поэтому выражение представляет собой некоторый постоянный для данной машины коэффициент и электромагнитный момент равен:

т. е. электромагнитный момент машины пропорционален произведению тока в якоре на магнитный поток полюсов.

§ 111. СПОСОБЫ ВОЗБУЖДЕНИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Генераторы постоянного тока могут быть выполнены с магнит­ным и электромагнитным возбуждением. Для создания магнитногопотока в генераторах первого типа используют постоянные магниты,

а в генераторах второго типа — электромагниты. Постоянные, магниты применяют лишь в машинах очень малых мощностей. Таким образом, электромагнитное возбуждение является наиболее широко используемым способом для создания магнитного потока. При этом способе возбуждения магнитный поток создается током, протекающим по обмотке возбуждения.

В зависимости от способа питания обмотки возбуждения генераторы постоянного тока могут быть с независимым возбужде­нием и с самовозбуждением.

При независимом возбуждении (рис. 143, а) обмотка возбуж­дения включается в сеть вспомогательного источника энергии по­стоянного тока. Для регулирования тока возбуждения Iв в цепи обмотки включено сопротивление rр. При таком возбуждении ток Iв не зависит от тока в якоре Iя.

Недостатком генераторов независимого возбуждения является потребность в дополнительном источнике энергии. Несмотря на то что этот источник обычно имеет малую мощность (несколько процентов мощности генераторов), необходимость в нем является большим неудобством, поэтому генераторы независимого возбуж­дения находят очень ограниченное применение только в машинах высоких напряжений, у которых питание обмотки возбуждения от цепи якоря недопустимо по конструктивным соображениям.

Генераторы с самовозбуждением в зависимости от включения обмотки возбуждения могут быть параллельного (рис. 143, б), по­следовательного (рис. 143, в) и смешанного (рис. 143, г) возбуж­дения.

У генераторов параллельного возбуждения ток мал (несколько процентов номинального тока якоря), и обмотка возбуждения имеет большое число витков. При последовательном возбуждении ток возбуждения равен току якоря и обмотка возбуждения имеет малое число витков.

При смешанном возбуждении на полюсах генератора помеща­ются две обмотки возбуждения — параллельная и последователь­ная.

Процесс самовозбуждения генераторов постоянного тока про­текает одинаково при любой схеме возбуждения. Так, например, в генераторах параллельного возбуждения, получивших наиболее широкое применение, процесс самовозбуждения протекает следую­щим образом.

Какой-либо первичный двигатель вращает якорь генератора, магнитная цепь (ярмо и сердечники полюсов) которого имеет не­большой остаточный магнитный поток Ф0. Этим магнитным пото­ком в обмотке вращающегося якоря индуктируется э. д. с. Е0, со­ставляющая несколько процентов номинального напряжения ма­шины.

Под действием э. д. с. Е0 в замкнутой цепи, состоящей из якоря и обмотки возбуждения, протекает ток Iв. Намагничивающая сила обмотки возбуждения Iвw (w— число витков) направлена согласно с потоком остаточного магнетизма, увеличивая магнитный поток машины Ф, что вызывает увеличение как э. д. с. в обмотке якоря Е, так и тока в обмотке возбуждения Iв. Увеличение последнего вызывает дальнейшее увеличение Ф, что в свою очередь увели­чивает Е и Iв.

Из-за насыщения стали магнитной цепи машины самовозбуж­дение происходит не беспредельно, а до какого-то определенного напряжения, зависящего от скорости вращения якоря машины и сопротивления в цепи обмотки возбуждения. При насыщении стали Магнитной цепи увеличение магнитного потока замедляется и про­цесс самовозбуждения заканчивается. Увеличение сопротивления в цепи обмотки возбуждения уменьшает как ток в ней, так и маг­нитный поток, возбуждаемый этим током. Поэтому уменьшается э. д. с. и напряжение, до которого возбуждается генератор.

Изменение скорости вращения якоря генератора вызывает из­менение э. д. с, которая пропорциональна скорости, вследствие чего Изменяется и напряжение, до которого возбуждается генератор.

Самовозбуждение генератора будет происходить лишь при определенных условиях, которые сводятся к следующим:

1. >Наличие потока остаточного магнетизма. При отсутствия этого потока не будет создаваться э. д. с. Е0, под действием котором в обмотке возбуждения начинает протекать ток, так что возбуждение генератора будет невозможным. Если машина размагничена и не имеет остаточного намагничивания, то по обмотке возбуждения надо пропустить постоянный ток от какого-либо постороннего источника электрической энергии. После отключения обмотки возбуждения машина будет иметь вновь остаточный магнитный поток.

2. Обмотка возбуждения должна быть включена согласно с потоком остаточного магнетизма, т. е. так, чтобы намагничивающая сила этой обмотки увеличивала поток остаточного магнетизма.

При встречном включении обмотки возбуждения ее намагничивающая сила будет уменьшать остаточный магнитный поток и при длительной работе может полностью размагнитить машину. Если обмотка возбуждения оказалась включенной встречно, то необходимо изменить направление тока в ней, т. е. поменять ме­стами провода, подходящие к зажимам этой обмотки.

3. Сопротивление цепи обмотки возбуждения должно быть чрезмерно большим, при очень большом сопротивлении цепи воз­буждения самовозбуждение генератора невозможно.

4. Сопротивление внешней нагрузки должно быть велико, так как при малом сопротивлении ток возбуждения будет также мал и самовозбуждения не произойдет.

§ 112. ХАРАКТЕРИСТИКИ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Характеристики генератора определяют его рабочие свойства и представляют зависимость между основными величинами, которы­ми являются э. д. с. в обмотке якоря Е, напряжение на его зажи­мах и, ток в якоре Iя, ток возбуждения Iв и скорость вращения якоря п.

Характеристики представляют собой зависимости между двумя из указанных основных величин при неизменных остальных. Эти зависимости имеют различный вид для генераторов разных типов.

Снятие всех характеристик машины производится при постоянной скорости вращения якоря, так как при изменении скорости зна­чительно изменяются все характеристики генератора.

Характеристика холостого хода генератора представляет собой зависимость между э. д. с. в якоре и током возбуждения, снятую при отсутствии нагрузки и постоянном числе оборотов.

Для генераторов независимого возбуждения при отсутствий; нагрузки (холостой ход) ток в якоре равен нулю. Так как э. д.с, индуктированная в обмотке якоря, равна Е = СпФ, то при постоян­ной скорости вращения э. д. с. окажется прямо пропорциональной магнитному потоку. Поэтому в измененном масштабе характери­стика холостого хода представляет магнитную характеристику машины.

При Iв=0 магнитная цепь машины (главным образом ярмо) имеет некоторый остаточный магнитный поток Ф0, который индукти­рует в обмотке якоря э. д. с. Е0 (рис. 144, а). Эта э. д.с. составляет несколько процентов (2—5%) номинального напряжения машины. С увеличением тока в обмотке возбуждения увеличивается как магнитный поток, так и э. д. с, индуктированная в обмотке якоря. Таким образом, при постоянном постепенном увеличении Iв увели­чивается и э. д.с. (кривая 1). Если после снятия восходящей ветви зависимости от точки А начать постепенно уменьшать ток возбуж­дения Iв, то э. д. с. также начнет уменьшаться, но за счет намагни­чивания стали нисходящая ветвь (кривая 2) пойдет несколько выше

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *